Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasite ; 31: 17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38530210

RESUMO

The sterile insect technique (SIT) involves releasing large numbers of sterile males to outcompete wild males in mating with females, leading to a decline in pest populations. In the current study, we conducted a suppression trial in Greece against the invasive dengue vector mosquito Aedes albopictus (Skuse) through the weekly release of sterile males for 22 weeks from June to September 2019. Our approach included the long-distance transport of sterile mosquitoes, and their release at a density of 2,547 ± 159 sterile males per hectare per week as part of an area-wide integrated pest management strategy (AW-IPM). The repeated releases of sterile males resulted in a gradual reduction in egg density, reaching 78% from mid-June to early September. This reduction remained between 70% and 78% for four weeks after the end of the releases. Additionally, in the SIT intervention area, the ovitrap index, representing the percentage of traps containing eggs, remained lower throughout the trial than in the control area. This trial represents a significant advance in the field of mosquito control, as it explores the viability and efficacy of producing and transporting sterile males from a distant facility to the release area. Our results provide valuable insights for future SIT programmes targeting Ae. Albopictus, and the methodology we employed can serve as a starting point for developing more refined and effective release protocols, including the transportation of sterile males over long distances from production units to intervention areas.


Title: Essai sur le terrain de la Technique de l'Insecte Stérile (TIS) ciblant la suppression d'Aedes albopictus en Grèce. Abstract: La technique de l'insecte stérile (TIS) consiste à libérer un grand nombre de mâles stériles pour supplanter les mâles sauvages lors de l'accouplement avec les femelles, entraînant ainsi un déclin des populations de nuisibles. Dans la présente étude, nous avons mené un essai de suppression en Grèce contre le moustique vecteur invasif de la dengue, Aedes albopictus (Skuse), par le biais de la libération hebdomadaire de mâles stériles pendant 22 semaines de juin à septembre 2019. Notre approche comprenait le transport sur de longues distances de moustiques stériles, et leur lâcher à une densité de 2 547 ± 159 mâles stériles par hectare et par semaine dans le cadre d'une stratégie de lutte intégrée contre les nuisibles à l'échelle de la zone (AW-IPM). Les lâchers répétés de mâles stériles ont entraîné une réduction progressive de la densité des œufs, atteignant 78 % de la mi-juin au début septembre. Cette réduction est restée entre 70 % et 78 % pendant quatre semaines après la fin des lâchers. De plus, dans la zone d'intervention de la TIS, l'indice d'oviposition, représentant le pourcentage de pièges contenant des œufs, est resté plus faible que dans la zone témoin tout au long de l'essai. Cet essai représente une avancée significative dans le domaine de la lutte contre les moustiques, car il explore la viabilité et l'efficacité de la production et du transport de mâles stériles depuis une installation éloignée vers la zone de lâcher. Nos résultats fournissent des informations précieuses pour les futurs programmes de TIS ciblant Ae. albopictus et la méthodologie que nous avons utilisée pourra servir de point de départ pour développer des protocoles de libération plus raffinés et plus efficaces, y compris le transport de mâles stériles sur de longues distances depuis les unités de production jusqu'aux zones d'intervention.


Assuntos
Aedes , Insetos , Animais , Feminino , Masculino , Grécia , Controle de Mosquitos
3.
J Insect Sci ; 23(5)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721493

RESUMO

Improvements are needed in mosquito mass-rearing to effectively implement the sterile insect technique (SIT). However, managing this technique is challenging and resource intensive. SIT relies on mass rearing, sterilization, and release of adult males to reduce field populations. Maintaining an acceptable level of female presence, who can transmit viruses through biting, is crucial. Females are also essential for facility sustainability. Sex sorting plays a vital role in the production process, and our current mechanical sorting approach aims to obtain a high number of adult males with minimal female contamination within 24 h of pupation. Utilizing protandry helps control female contamination. While the 24-h sorting period achieves desired contamination levels, it may not yield enough females to sustain breeding lines, leading to increased labor costs that impact project sustainability. By delaying the sorting procedure to 48 h, we obtained sufficient females to sustain breeding lines, achieving a balance between male production and female contamination using the automatic version of the Fay-Morlan device as the sorting tool.


Assuntos
Culicidae , Feminino , Masculino , Animais , Insetos
4.
PLoS One ; 18(9): e0292043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751428

RESUMO

The "Sterile Insect Technique" (SIT), a promising method to control Aedes albopictus, the Asian tiger mosquito, is gaining increasing interest. Recently, the role of microbiota in mosquito fitness received attention, but the link between microbiota and larval diet in mass rearing programs for SIT remains largely unexplored. We characterized the microbiota of four larval instars, pupae and eggs of non-wild (NW) lab-reared Ae. albopictus fed with a diet based on Black soldier fly (Hermetia illucens) larvae powder and fish food KOI pellets. We compared it with wild (W) field-collected individuals and the bacterial community occurring in rearing water-diet (DIET). A total of 18 bacterial classes with > 0.10% abundance were found overall in the samples, with seven classes being especially abundant. Overall, the microbiota profile significantly differed among NW, W and DIET. Verrucomicrobiae were significantly more abundant in W and DIET, Bacteroidia were more abundant in NW and DIET, and Gammaproteobacteria were only more abundant in W than in DIET. W-eggs microbiota differed from all the other groups. Large differences also appeared at the bacterial genus-level, with the abundance of 14 genera differing among groups. Three ASVs of Acinetobacter, known to have positive effects on tiger mosquitoes, were more abundant in NW than in W, while Serratia, known to have negative or neutral effects on another Aedes species, was less abundant in NW than in W. The bacterial community of W-eggs was the richest in species, while dominance and diversity did not differ among groups. Our data show that the diet based on Black soldier fly powder and fish food KOI influences the microbiota of NW tiger mosquito immature stages, but not in a way that may suggest a negative impact on their quality in SIT programs.


Assuntos
Aedes , Infertilidade , Animais , Larva , Pós , Dieta , Peixes , Ovos
5.
Insects ; 13(10)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36292847

RESUMO

The sterile insect technique (SIT) is a biologically based method of pest control, which relies on the mass production, sterilization, and release of sterile males of the target species. Since females can transmit viruses, it is important to develop a mass rearing system to produce a large number of males with a low presence of females. We evaluated the effects of different strains, larval diets and sexing tools on male productivity and residual female presence for the application of SIT against Aedes albopictus. Strains coming from Italy, Germany, Greece, and Montenegro, with different levels of colonization, were reared with three larval diets: IAEA-BY, BLP-B and SLP-BY. Developed pupae were sexed using two different mechanical methods: sieve or Fay-Morlan separator. The results proved that adoption of the Fay-Morlan separator increased the productivity and limited the female presence. The IAEA-BY diet showed the lowest female contamination. Strains with a high number of breeding generations showed a decreased productivity and an increased female presence. Increased female presence was found only in extensively reared strains and only when the sorting operation was conducted with sieves. We hypothesize that extensive colonization may determine a size reduction which limits the sexing tool efficiency itself.

6.
Front Bioeng Biotechnol ; 10: 833698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051578

RESUMO

The pathogen transmitting Aedes albopictus mosquito is spreading rapidly in Europe, putting millions of humans and animals at risk. This species is well-established in Albania since its first detection in 1979. The sterile insect technique (SIT) is increasingly gaining momentum worldwide as a component of area-wide-integrated pest management. However, estimating how the sterile males will perform in the field and the size of target populations is crucial for better decision-making, designing and elaborating appropriate SIT pilot trials, and subsequent large-scale release strategies. A mark-release-recapture (MRR) experiment was carried out in Albania within a highly urbanized area in the city of Tirana. The radio-sterilized adults of Ae. albopictus Albania strain males were transported by plane from Centro Agricoltura Ambiente (CAA) mass-production facility (Bologna, Italy), where they were reared. In Albania, sterile males were sugar-fed, marked with fluorescent powder, and released. The aim of this study was to estimate, under field conditions, their dispersal capacity, probability of daily survival and competitiveness, and the size of the target population. In addition, two adult mosquito collection methods were also evaluated: BG-Sentinel traps baited with BG-Lure and CO2, (BGS) versus human landing catch (HLC). The overall recapture rates did not differ significantly between the two methods (2.36% and 1.57% of the total male released were recaptured respectively by BGS and HLC), suggesting a similar trapping efficiency under these conditions. Sterile males traveled a mean distance of 93.85 ± 42.58 m and dispersed up to 258 m. Moreover, they were observed living in the field up to 15 days after release with an average life expectancy of 4.26 ± 0.80 days. Whether mosquitoes were marked with green, blue, yellow, or pink, released at 3.00 p.m. or 6.00 p.m., there was no significant difference in the recapture, dispersal, and survival rates in the field. The Fried competitiveness index was estimated at 0.28. This mark-release-recapture study provided important data for better decision-making and planning before moving to pilot SIT trials in Albania. Moreover, it also showed that both BG-traps and HLC were successful in monitoring adult mosquitoes and provided similar estimations of the main entomological parameters needed.

7.
Front Bioeng Biotechnol ; 10: 876677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928955

RESUMO

Mark-release-recapture (MRR) trials have been conducted in Northern Italy to evaluate the capacity of radio-substerilized Aedes albopictus males to survive, disperse, and engage in mating in the field. Two MRR sessions with the human landing collection method (HLC) were conducted with the simultaneous release of irradiated males marked with four different pigment colors. The survival and dispersal rates seem to be influenced more by environmental factors such as barriers, shading, and vegetation rather than weather parameters. In this study, we confirmed a positive linear relationship between the sterile adult male's daily survival rate and the relative humidity previously reported in similar experimental conditions and a different dispersal capacity of the released A. albopictus males in low- (NDVI index <0.4) and high (NDVI index >0.4)-vegetated areas. Consistent with previous studies, A. albopictus males have their maximal dispersion in the first days after release, while in the following days the males become more stationary. The similar field performances obtained with marked and unmarked radio-sterilized and untreated A. albopictus males on similar environments confirm the negligible effects of irradiation and marking procedures on the quality of the males released. The similar sterile to wild (S/W) male ratio measured in high- and low-vegetation areas in the release sites indicates a similar distribution pattern for the wild and the released sterile males. According to the MRR data collected, the Lincoln index estimated different A. albopictus mean population densities in the study areas equal to 7,000 and 3,000 male/ha, respectively.

8.
Insects ; 13(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35735841

RESUMO

Aedes (Stegomyia) albopictus (Skuse, 1895) is an invasive important medical and veterinary pest species. The sterile insect technique (SIT) involves the mass rearing of males, and their sterilization and release into the habitat to compete with wild males. Our research objective was to compare the effectiveness of three larval diet recipes (IAEA-BY, BCWPRL, and MIX-14) in the laboratory rearing of Ae. albopictus males to evaluate the available economical feeding alternatives. The separation of sexes was done in the pupal stage by sieving. Reared males were tested for flight capacity and longevity. The application of the BCWPRL diet resulted in a higher portion of sieved male pupae than females, but the development of males was the slowest, and the number of obtained males (pupae and adults) was lower compared to the other two diets. The adult mean survival time was the highest in males fed with MIX-14 and the lowest in males fed with IAEA-BY. Males fed by IAEA-BY also demonstrated higher initial mortality in the adult stage. The diets BCWPRL and MIX-14 are economically more convenient than IAEA-BY (2.28 and 5.30 times cheaper, respectively). The cheapest diet, MIX-14, might represent a candidate for replacing the effective but still expensive IAEA-BY larval diet, providing lower costs of sterile male production.

9.
Insects ; 13(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35206755

RESUMO

Genetic based mosquito control methods have been gaining ground in recent years for their potential to achieve effective suppression or replacement of vector populations without hampering environments or causing any public health risk. These methods require the mass rearing of the target species in large facilities sized to produce millions of sterile males, as already well established for a number of insects of agricultural importance. Assessing the performance of released males in Sterile Insect Technique (SIT) control programs is of the utmost importance for the success of the operation. Besides the negative effects of mass rearing and sterilization, the handling of sterilized insects and shipment to distant areas may also negatively impact the quality of sterilized males. The aim of the current study was to design and executive quality control (QC) tests for sterilized Aedes albopictus (Asian tiger mosquito) males delivered by air shipment from the mass production facility located in Italy to Greece and Montenegro field release sites. Mass reared mosquito strains were based on biological materials received from Italy, Greece and Montenegro. Tests conducted at the mass rearing facility before transportation revealed a rather high residual female contamination following mechanical sex separation (approximately 1.5% females, regardless of the mosquito strain). Irradiated males of all three mosquito strains induced high levels of sterility to females. Shipment lasting approximately 24 h resulted in approximately 15% mortality, while when shipment lasted nearly two days this increased to almost 40%. The flight ability of sterilized males following one day transportation time was satisfactory (over 60%). The response of sterile males to food and water starvation was comparable and slightly lower than that of wild non-transported males. Longevity of sterile males was shorter than that of wild counterparts and it seems it was not affected by mating to wild females. Both mating propensity and mating competitiveness for wild virgin females was higher for the wild, control males compared to the sterile, transported ones. Overall, the performance of sterile male Ae. albopictus delivered from the mass rearing facility of Italy to Greece in approximately 24 h was satisfactory. Transportation lasting two days or longer incurred detrimental effects on males, which called into question the outcome of the SIT release programs. In conclusion, our results demonstrate the need of quality control procedures, especially when sterile male production facilities are not near to the releasing point. Transportation could be a serious drawback for the implementation of Sterile Insect Releases and, consequently, it is important to establish an efficient and fast transportation of sterilized males in advance.

11.
Parasit Vectors ; 15(1): 9, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34983608

RESUMO

BACKGROUND: The invasive species Aedes albopictus, commonly known as the Asian tiger mosquito, has undergone extreme range expansion by means of steady introductions as blind passengers in vehicles traveling from the Mediterranean to south-west Germany. The more than 25 established populations in the State of Baden-Württemberg, Palatine and Hesse (south-west Germany) have become a major nuisance and public health threat. Aedes albopictus deserves special attention as a vector of arboviruses, including dengue, chikungunya and Zika viruses. In Germany, Ae. albopictus control programs are implemented by local communities under the auspices of health departments and regulatory offices. METHODS: The control strategy comprised three pillars: (i) community participation (CP) based on the elimination of breeding sites or improved environmental sanitation, using fizzy tablets based on Bacillus thuringiensis israelensis (fizzy Bti tablets; Culinex® Tab plus); (ii) door-to-door (DtD) control by trained staff through the application of high doses of a water-dispersible Bti granular formulation (Vectobac® WG) aimed at achieving a long-lasting killing effect; and (iii) implementation of the sterile insect technique (SIT) to eliminate remaining Ae. albopictus populations. Prior to initiating large-scale city-wide treatments on a routine basis, the efficacy of the three elements was evaluated in laboratory and semi-field trials. Special emphasis was given to the mass release of sterile Ae. albopictus males. RESULTS: More than 60% of the local residents actively participated in the first pillar (CP) of the large-scale control program. The most effective element of the program was found to be the DtD intervention, including the application of Vectobac® WG (3000 ITU/mg) to potential breeding sites (10 g per rainwater container, maximum of 200 l = maximum of approx. 150,000 ITU/l, and 2.5 g per container < 50 l) with a persistence of at least 3 weeks. In Ludwigshafen, larval source management resulted in a Container Index for Ae. albopictus of < 1% in 2020 compared to 10.9% in 2019. The mean number of Aedes eggs per ovitrap per 2 weeks was 4.4 in Ludwigshafen, 18.2 in Metzgergrün (Freiburg) (SIT area) and 22.4 in the control area in Gartenstadt (Freiburg). The strong reduction of the Ae. albopictus population by Bti application was followed by weekly releases of 1013 (Ludwigshafen) and 2320 (Freiburg) sterile Ae. albopictus males per hectare from May until October, resulting in a high percentage of sterile eggs. In the trial areas of Ludwigshafen and Frieburg, egg sterility reached 84.7 ± 12.5% and 62.7 ± 25.8%, respectively; in comparison, the natural sterility in the control area was 14.6 ± 7.3%. The field results were in line with data obtained in cage tests under laboratory conditions where sterility rates were 87.5 ± 9.2% after wild females mated with sterile males; in comparison, the sterility of eggs laid by females mated with unirradiated males was only 3.3 ± 2.8%. The overall egg sterility of about 84% in Ludwigshafen indicates that our goal to almost eradicate the Ae. albopictus population could be achieved. The time for inspection and treatment of a single property ranged from 19 to 26 min depending on the experience of the team and costs 6-8 euros per property. CONCLUSIONS: It is shown that an integrated control program based on a strict monitoring scheme can be most effective when it comprises three components, namely CP, DtD intervention that includes long-lasting Bti-larviciding to strongly reduce Ae. albopictus populations and SIT to reduce the remaining Ae. albopictus population to a minimum or even to eradicate it. The combined use of Bti and SIT is the most effective and selective tool against Ae. albopictus, one of the most dangerous mosquito vector species.


Assuntos
Aedes/fisiologia , Controle de Mosquitos/métodos , Aedes/efeitos da radiação , Animais , Feminino , Alemanha , Humanos , Infertilidade Masculina , Masculino , Pupa/efeitos da radiação , Controle de Qualidade
12.
PLoS Negl Trop Dis ; 15(9): e0009698, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529653

RESUMO

In the last decades, the colonization of Mediterranean Europe and of other temperate regions by Aedes albopictus created an unprecedented nuisance problem in highly infested areas and new public health threats due to the vector competence of the species. The Sterile Insect Technique (SIT) and the Incompatible Insect Technique (IIT) are insecticide-free mosquito-control methods, relying on mass release of irradiated/manipulated males, able to complement existing and only partially effective control tools. The validation of these approaches in the field requires appropriate experimental settings, possibly isolated to avoid mosquito immigration from other infested areas, and preliminary ecological and entomological data. We carried out a 4-year study in the island of Procida (Gulf of Naples, Italy) in strict collaboration with local administrators and citizens to estimate the temporal dynamics, spatial distribution, and population size of Ae. albopictus and the dispersal and survival of irradiated males. We applied ovitrap monitoring, geo-spatial analyses, mark-release-recapture technique, and a citizen-science approach. Results allow to predict the seasonal (from April to October, with peaks of 928-9,757 males/ha) and spatial distribution of the species, highlighting the capacity of Ae. albopictus population of Procida to colonize and maintain high frequencies in urban as well as in sylvatic inhabited environments. Irradiated males shown limited ability to disperse (mean daily distance travelled <60m) and daily survival estimates ranging between 0.80 and 0.95. Overall, the ecological characteristics of the island, the acquired knowledge on Ae. albopictus spatial and temporal distribution, the high human and Ae. albopictus densities and the positive attitude of the resident population in being active parts in innovative mosquito control projects provide the ground for evidence-based planning of the interventions and for the assessment of their effectiveness. In addition, the results highlight the value of creating synergies between research groups, local administrators, and citizens for affordable monitoring (and, in the future, control) of mosquito populations.


Assuntos
Aedes/fisiologia , Controle de Mosquitos/métodos , Aedes/crescimento & desenvolvimento , Distribuição Animal , Animais , Ecologia , Meio Ambiente , Feminino , Humanos , Ilhas , Itália , Masculino , Densidade Demográfica , Características de Residência , Estações do Ano
13.
Insects ; 12(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34357305

RESUMO

In Europe, one of the most significant mosquitoes of public health importance is Aedes albopictus (Skuse), an allochthonous species of Asian origin. One of the most promising control methods against Aedes albopictus is the sterile insect technique (SIT), which consists of mass rearing the target species, separation of males from females, and male exposure to sterilizing ionizing radiation. Once released in the environment, the sterile males are expected to search for wild females to mate with. If mating occurs, no offspring is produced. The quality of sterile males is a crucial aspect in SIT programs in order to optimize effectiveness and limit production costs. The integration of probiotic microorganisms in larval and adult mosquito diets could enhance the quality parameters of the released sterile males. In this review, we attempt to give the most representative picture of the present knowledge on the relationships between gut microbiota of mosquitoes and the natural or artificial larval diet. Furthermore, the possible use of probiotic microorganisms for mosquito larvae rearing is explored. Based on the limited amount of data found in the literature, we hypothesize that a better understanding of the interaction between mosquitoes and their microbiota may bring significant improvements in mosquito mass rearing for SIT purposes.

14.
Heliyon ; 7(6): e07381, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34222702

RESUMO

BACKGROUND: Aedes albopictus is currently the most widespread invasive mosquito species in the world. It has paramount medical importance since females are efficient vectors of important viruses affecting humans. The development of alternative control strategies to complement control measures has become an imperative and involves the Sterile Insect Technique (SIT). Research to improve the productivity of mass-rearing, as well as the quality of mass-reared males is of essential importance for the success of SIT. METHODS: This study compared the influence of three differently sized cages for Ae. albopictus mass-rearing on wing length, adult survival and egg production during 20 generations of colonization. Plexiglas cages of 40x40x40 cm (C1), 100 × 20 × 100 cm (C2) and 100 × 65 × 100 cm (C3) were loaded with equal adult density, and sex ratio of 1:1. An open source image processing and analysis programme (ImageJ) was used for the wing measurement and egg counting. RESULTS: In all tested cages, we identified two periods separated by the generation showing the minimum value of each considered parameter (wing length, adult survival and egg production). The wing length and adult survival passed through the phases of initial decrease to about intermediate colonization time, and increased afterwards. Fecundity was steady during the first period and increased in the second one. Cage C1 demonstrated not only the best values for all parameters but also the smallest decrease in the initial phase. Recovering of the caged mosquitoes in the second half of the study was higher in cages C1 and C2, than in C3. CONCLUSIONS: C1 provided the least negative selection pressure on wing length, adult survival and egg production for reared Ae. albopictus. Anyhow, since maximising mosquito density by exploiting the minimum space is a priority in mosquito mass-rearing, C2 might be a better choice for better fitting the space of mass-rearing rooms.

15.
Insects ; 12(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513716

RESUMO

Aedes albopictus, an invasive mosquito species, is currently well established in many European countries, posing high risks to human health. A preliminary trial using repetitive releases of irradiated sterile male mosquitoes was designed, implemented and evaluated for the first time in Greece. The main scope of this trial was to investigate the efficacy of sterile insect technique (SIT) on wild population egg hatch rate in Greece using mass-produced sterile male mosquitoes from another country (Italy). The study was conducted in Vravrona area, close to Athens International Airport (Attica Region). The number of eggs laid in ovitraps was similar in all intervention and control plots. However, a significant reduction in egg hatch rate was recorded in the SIT plot in comparison with both control plots starting two weeks after the first release. This trial validates the logistics (transportation, releases handling and monitoring) as a major step towards implementing efficient, environmentally safe control approaches as an additional tool against the invasive Aedes species in Greece and more widely in Europe.

16.
J Med Entomol ; 58(2): 807-813, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33179753

RESUMO

Vector-borne diseases account for 17% of infectious diseases, leading to more than one million deaths each year. Mosquitoes are responsible for 90% of the casualties and alternative control methods to insecticides are urgently needed, especially against Aedes vectors. Aedes albopictus is a particularly important species, causing major public health problems because it is a vector of several arboviruses and has a strong invasive behavior. Various genetic control methods have been proposed to be integrated into the management strategies of Aedes species, among which the sterile insect technique (SIT), which proved efficient against various insect pests and vectors. However, the ability of released irradiated sterile male mosquitoes to compete with their wild counterparts and induce sterility in wild females, which is critical to the success of this strategy, remained poorly defined. Here, we assessed the field competitiveness of Ae. albopictus irradiated male using data from eight release trials implemented in Northern Italy for 3 yr. Sterile males were capable of inducing a good level of sterility in the wild female population, however, with high variability in time and space. The field competitiveness of the released males was strongly negatively correlated with the ratio of sterile to wild males. This should be taken into consideration when designing future programs to suppress field populations of Aedes mosquitoes.


Assuntos
Aedes , Infertilidade , Controle de Mosquitos/métodos , Mosquitos Vetores , Animais , Feminino , Masculino , Projetos Piloto , Comportamento Sexual Animal
17.
PLoS Negl Trop Dis ; 14(5): e0008284, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32357192

RESUMO

BACKGROUND: Diflubenzuron (DFB) is one of the most used insecticides in mosquito larval control including that of Culex pipiens, the proven vector of the recent West Nile Virus epidemics in Europe. Two mutations (I1043L and I1043M) in the chitin synthase (CHS) putative binding site of DFB have been previously reported in Cx. pipiens from Italy and associated with high levels of resistance against this larvicide. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the identification of a third mutation at the same I1043 position of the CHS gene resulting in the substitution of Isoleucine to Phenylalanine (I1043F). This mutation has also been found in agricultural pests and has been functionally validated with genome editing in Drosophila, showing to confer striking levels (>15,000 fold) of DFB resistance. The frequency of the I1043F mutation was found to be substantially higher in Cx. pipiens mosquitoes surviving DFB doses largely exceeding the recommended field dose, raising concerns about the future efficient use of this insecticide. We monitored the presence and frequency of DFB mutations in Cx. pipiens mosquitoes from several Mediterranean countries, including Italy, France, Greece, Portugal and Israel. Among the Cx. pipiens populations collected in Northern Italy all but one had at least one of the three DFB mutations at allele frequencies reaching 93.3% for the I1043M, 64.8% for the I1043L and 10% for the I1043F. The newly reported I1043F mutation was also identified in two heterozygote individuals from France (4.2% allelic frequency). In contrast to Italy and France, no DFB resistant mutations were identified in the Cx. pipiens mosquitoes sampled from Greece, Portugal and Israel. CONCLUSIONS/SIGNIFICANCE: The findings of our study are of major concern for mosquito control programs in Europe, that rely on the use of a limited number of available larvicides, and highlight the necessity for the development of appropriate Insecticide Resistance Management (IRM) programs, to ensure the sustainable use of DFB.


Assuntos
Quitina Sintase/genética , Culex/enzimologia , Diflubenzuron/farmacologia , Proteínas de Insetos/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Mutação Puntual , Animais , Culex/efeitos dos fármacos , Culex/genética , Região do Mediterrâneo , Mutação de Sentido Incorreto
18.
Parasit Vectors ; 11(Suppl 2): 650, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30583737

RESUMO

BACKGROUND: We explored the possibility to improve male/female separation (sexing) in Aedes albopictus by selection of two strains, one toward increasing sex dimorphism and another toward increasing protandry. In the laboratory we selected and crossed small males with large females to exploit dimorphism, and early pupating males with late pupating females to exploit protandry. RESULTS: While selection for enhanced dimorphism was not a profitable character, the selection for enhanced protandry up to F10 produced significant improvement in the time interval between male and female pupation. By collecting the pupae at 24 h from the beginning of pupation, without any sieving operation, we obtained about 28.50% of pupae (calculated in relation to the estimated initial number of first instar larvae used), vs 26.49% we had in the control strain, and, more interestingly, when checking the sex ratio of these pupae we observed a presence of females of 0.92% vs 23.02% in the control strain. We also modified our egg hatching protocol from the previous standard procedure that required keeping the eggs in the glass hatching container overnight (for about 14-16 h) to a new protocol where eggs are kept in the hatching container for 4 h in order to obtain more synchronized larvae. This was possible without any reduction in the egg hatching rate. CONCLUSIONS: In Aedes albopictus it is possible to develop hyper-protandric strains useful to produce male pupae without applying other sexing systems. This represents a considerable achievement assisting the Sterile Insect Technique application, allowing improvement of the current sexing method based on mechanical separation. More investigations are under way in order to further enhance the male productivity capacity of the strain and to determine whether the selection has any impact on the male fitness parameters.


Assuntos
Aedes/genética , Infertilidade Masculina , Processos de Determinação Sexual , Aedes/fisiologia , Animais , Feminino , Larva , Masculino , Pupa , Razão de Masculinidade
19.
PLoS One ; 13(5): e0198194, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29813108

RESUMO

Cannibalism is a commonly observed phenomenon in arthropod species having relevant consequences for population dynamics and individual fitness. It is a context-dependent behaviour and an understanding of the factors affecting cannibalism rate is crucial to highlight its ecological relevance. In mosquitoes, cannibalism between larval stages has been widely documented, and the role of density, food availability and length of contact between individuals also ascertained. However, although mosquitoes can develop in temporary water habitats with very heterogeneous topologies, the role of the site shape where cannibals and victims co-occur has been instead overlooked. In this paper, we investigated this issue by using a simulation approach and laboratory cannibalism experiments between old (third- and fourth-instars) and young (first-instar) larvae of the tiger mosquito Aedes albopictus. Three virtual spaces with different shapes were simulated and the number of larval encounters was estimated in each one to assess whether the spatial shape affected the number of encounters between cannibal and victims. Then, experimental trials in containers with similar shapes to those used in the simulations were performed, and the cannibalism rate was estimated at 24 and 48h. Our results showed that the spatial shape plays a role on cannibalism interactions, affecting the number of encounters between individuals. Indeed, in the experimental trials performed, we observed the highest cannibalism rate in the container with the highest number of encounters predicted by the simulations. Interestingly, we found also that spatial shape can affect cannibalism not only by affecting the number of encounters, but also the number of encounters "favorable" for cannibalistic events. Temporary waters are inhabited by several species other than mosquitoes. Our results, showing an influence of the spatial shape on cannibalism in Ae. albopictus larvae, add a new critical factor to those affecting ecological interactions in these habitats.


Assuntos
Aedes , Canibalismo , Laboratórios , Modelos Teóricos , Análise Espacial , Animais , Ecossistema , Densidade Demográfica
20.
Sci Rep ; 8(1): 6122, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650973

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...